Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
نویسندگان
چکیده
The mechanisms that govern the voluntary transition from walking to running as walking speed increases in human gait are not well understood. The objective of this study was to examine the hypothesis that plantar flexor muscle force production is greatly impaired at the preferred transition speed (PTS) due to intrinsic muscle properties and, thus, serves as a determinant for the walk-to-run transition. The plantar flexors have been shown to be important contributors to satisfying the mechanical energetic demands of walking and are the primary contributors to the observed ground reaction forces (GRFs) during the propulsion phase. Thus, if the plantar flexor force production begins to diminish near the PTS despite an increase in muscle activation, then a corresponding decrease in the GRFs during the propulsion phase would be expected. This expectation was supported. Both the peak anterior/posterior and vertical GRFs decreased during the propulsion phase at walking speeds near the PTS. A similar decrease was not observed during the braking phase. Further analysis using forward dynamics simulations of walking at increasing speeds and running at the PTS revealed that all lower extremity muscle forces increased with walking speed, except the ankle plantar flexors. Despite an increase in muscle activation with walking speed, the gastrocnemius muscle force decreased with increasing speed, and the soleus force decreased for walking speeds exceeding 80% PTS. These decreases in force production were attributed to the intrinsic force-length-velocity properties of muscle. In addition, the running simulation analysis revealed that the plantar flexor forces nearly doubled for similar activation levels when the gait switched to a run at the PTS due to improved contractile conditions. These results suggest the plantar flexors may serve as an important determinant for the walk-to-run transition and highlight the important role intrinsic muscle properties play in determining the specific neuromotor strategies used in human locomotion.
منابع مشابه
Concentric plantar flexor torque deficits in female athletes with functional ankle instability
After an ankle injury, residual symptoms can followed to recurrent sprain in physical activity and 30% of its lead to functional ankle instability (FAI) Therefore, the aim of this study was to examine the isokinetic concentric and eccentric torque measures of the ankle musculature to body weight in female athletes with and without FAI.30 female athletes, who play in pro league of Tehran, p...
متن کاملPlantar flexor moment arm and muscle volume predict torque-generating capacity in young men.
Muscle volume is known to correlate with maximal joint torque in humans, but the role of muscle moment arm in determining maximal torque is less clear. Moderate correlations have been reported between maximal isometric knee extensor torque and knee extensor moment arm, but no such observations have been made for the ankle joint. It has been suggested that smaller muscle moment arms may enhance ...
متن کاملChanging the demand on specific muscle groups affects the walk-run transition speed.
It has been proposed that muscle-specific factors trigger the human walk-run transition. We investigated if changing the demand on trigger muscles alters the preferred walk-run transition speed. We hypothesized that (1) reducing the demand on trigger muscles would increase the transition speed and (2) increasing the demand on trigger muscles would decrease the transition speed. We first determi...
متن کاملThe relationship between joint kinetic factors and the walk-run gait transition speed during human locomotion.
The primary purpose of this project was to examine whether lower extremity joint kinetic factors are related to the walk-run gait transition during human locomotion. Following determination of the preferred transition speed (PTS), each of the 16 subjects walked down a 25-m runway, and over a floor-mounted force platform at five speeds (70, 80, 90, 100, and 110% of the PTS), and ran over the for...
متن کاملSwing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.
There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 208 Pt 5 شماره
صفحات -
تاریخ انتشار 2005